Multimodal Brain Tumor Lesion Segmentation using Limited Labeled Images

Dhruv Sharma, Zahir Shanis, Chandan K. Reddy, Samuel Gerber, and Andinet Enquobahrie
Collaborative software R&D

Technical computing
Algorithms & applications
Software process & infrastructure
Support & training
Open source leadership

Supporting all sectors
Industry, government & academia
Challenges

Large amount of labeled data required to train deep learning models

Limited Medical experts to label the data
Active Learning

- No need to get the entire dataset labeled from expert
- Get only the most *informative* data points labeled and train on them
- *Informative points* - points from the unlabeled pool which impart the highest learning to a model
Brain Tumor - Clinical Motivation

- Gliomas are the most common type of brain tumors which emerge from glial cells
- The gliomas can be of two types based on their severity - Low Grade Gliomas (LGG) and High Grade Gliomas (HGG)
- It becomes highly necessary to detect the Gliomas in the early stages itself
- Thus, having softwares which can segment out the tumor lesions with great accuracy are of great importance

T2 scan of HGG

T2 scan of LGG
Major Components

Unlabeled Pool of data (D_U)
- Pools of data - labeled and unlabeled

Labeled Pool of data (D_L)

Deep Learning Model
- For the task of lesion segmentation

Query Strategy
- To select the most informative points

Data - 2018 BraTS

Model - UNet

Query Strategy - Coreset Based Ranked Batch Mode Sampling
Model Architecture

- U-Net - Classic encoder-decoder model
- Encoder captures the spatial information into a reduced form using the CNN
- Decoder captures the semantic information by combining the encoder feature maps with the decoder using skip connections
- Dice loss function was used. Aims at maximizing the dice coefficient metric, thus performing better for data with class imbalance
Query Strategies

Uncertainty Sampling

- Learner queries the instances from the unlabeled pool about which it is least certain
- Certainty??? (for classification)
 - Least confident:
 - Picks the points which has the least confidence scores
 - Eg: $a = [0.9, 0.1]$, $b = [0.6, 0.4]$ => picks b
- Issues:
 - Does not captures the *representativeness* factor
 - Generally used with traditional ML models, and not with deep learning models
Query Strategies

Ranked Batch-Mode Sampling

- Uncertainty:
 - Uncertainty Sampling
- Representativeness:
 - Intra-diversity
 - Inter-diversity
- Alpha maintains a balance in between the two scores
- Iterative builds the query pool

\[
\alpha = \frac{|D_U|}{|D_U| + |D_L| + |D_Q|} \\
\text{score} = \alpha \times (1 - s(D_U, D_Q U D_L)) + (1 - \alpha) \times U(D_U)
\]
Query Strategies

Issues with Ranked Batch Mode Sampling:
- Too much computational time and space if the dataset is too large
- Thus, increases the query time tremendously

Coreset based Ranked Batch-Mode Sampling
- Uncertainty:
 - Uncertainty Sampling
- Representativeness:
 - Intra-diversity: K-Means Clustering
 - Inter-diversity b/w reduced and labeled pool
- Alpha maintains a balance in between the two scores
- Iteratively builds the query pool
$K(\text{no. of clusters}) = 0.8 \times N + 0.2 \times |D_U|$

$$alpha = \frac{|D_{CU}|}{|D_{CU}| + |D_L| \times |D_Q|}$$

$$score = alpha \times (1 - s(D_{CU}, D_L)) + (1 - alpha) \times U(D_{CU})$$
(1) Train model

(2.a) Calculate uncertainty

Feature Extraction

Feature Extraction

(2.b) Is informative?

(3) Ranking algorithm

Uncertainty scores of D_U

Similarity scores of D_U with D_L

(4) Most informative points

(5) Add to D_L and remove from D_U

Annotation

The intensity of border represents the uncertainty.

Unlabeled Pool of data (D_U)

Labeled Pool of data (D_L)
Data - 2018 BraTS MICCAI challenge dataset

- Consists of 210 cases of High Grade Gliomas (HGG) and 75 cases of Low Grade Gliomas (LGG)
- Each slice has been manually annotated into 4 categories - enhancing tumor, tumor core, whole tumor, and the background and normal brain pixels
- 4 modalities - T1, T1 contrast enhanced (T1ce), T2 and FLAIR

Coloring scheme - Yellow: Whole Tumor, Green: Tumor Core, Blue: Enhancing Tumor
Preprocessing

- Each slice of the four modalities for every case is normalized to have zero mean and unit variance
- **Patches** are randomly sampled from each slice after eliminating the zero-intensity pixels to tackle the class-imbalance problem
- data is randomly split into the train-validation-test parts in the ratio of 80:10:10 on case level
- This populates the **training data with 99,864 patches**, **validation data with 12,264 patches**, and **testing data with 12,702 patches**, each patch of size 128 * 128 * 4
Results

<table>
<thead>
<tr>
<th>Exp No.</th>
<th>Model</th>
<th>Whole Tumor Dice Coefficient</th>
<th>Tumor Core Dice Coefficient</th>
<th>Enhancing Tumor Dice Coefficient</th>
<th>Avg Query Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Vanilla U-Net</td>
<td>0.815</td>
<td>0.689</td>
<td>0.608</td>
<td>-</td>
</tr>
<tr>
<td>2.</td>
<td>U-Net with Uncertainty Sampling</td>
<td>0.802</td>
<td>0.724</td>
<td>0.767</td>
<td>-</td>
</tr>
<tr>
<td>3.</td>
<td>U-Net with RBM Sampling</td>
<td>0.829</td>
<td>0.812</td>
<td>0.788</td>
<td>1hr 50mins</td>
</tr>
<tr>
<td>4.</td>
<td>U-Net with Coreset based RBM sampling</td>
<td>0.844</td>
<td>0.83</td>
<td>0.799</td>
<td>43 mins</td>
</tr>
</tbody>
</table>
Conclusion

- Lesser number of queries and reduced average query time
 - Faster convergence due to lesser queries
- Tackling class imbalance using Active Learning
 - Intelligently selects the under-represented class as they are more uncertain initially, and also have less representation in the labeled dataset
- Future Work:
 - Test against more datasets
 - Uncertainty of model using Monte Carlo Dropout
Questions?